Silicon N-P-N Epitaxial-Base High-Power Transistor

RCA9166B

Features:

■ High dissipation capability

■ Maximum safe-area-of-operation curves

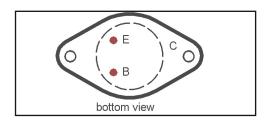
■ High voltage

■ High gain at high current

Applications:

■ High-fidelity amplifiers

■ Series and shunt regulators


■ Linear power amplifiers

The RCA9166 Series are ballasted epitaxial-base silicon n-p-n transistors featuring high gain at high current and high voltage. They differ from each other in voltage ratings, safe-operating area (SOA) ratings and the currents at which the parameters are controlled.

The RCA9166 Series are supplied in the JEDEC TO-204MA hermetic steel package.

Formerly Types are the TA9166 Series.

Terminal Designations

JEDEC TO-204MA

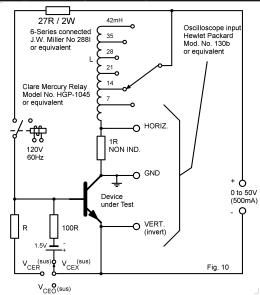
Source: RCA SSD-220C (1981)

MAXIMUM RATINGS, Absolute-Maximum Values:

$V_{ ext{CBO}}$	-	V
$U_{CER}^{(SUS)}$ $R_{BE} = 100\Omega$	225	V
V _{CEO} (sus)	200	V
V_{EBO}	5	V
I _C	16	А
I _{см}	30	А
I _B	5	А
P _T T _C ≤ 25°C	250	W
P_T $T_C > 25^{\circ}C$ Derate linearly	1.43	W/°C
$T_{stg}T_{J}$	-65 to +200	°C
T _L At distance ≥ 1/32 in. (0.8mm) from seating plane for 10s max.	230	°C

Electrical Characteristics, at Case Temperature $(T_C) = 25^{\circ}C$

Unless Otherwise Specified


CHARACTERISTIC		TEST CONDITIONS		LIMITS		
		VOLTAGE V dc	CURRENT A	RCA9166B		UNITS
	V _{CE}	I _c	Min.	Max.		
I _{CEO}		150		-	1	
$I_{CER} R_{BE} = 100$ $T_{C} = 150^{\circ}C$	0Ω,	150		-	4	mA
h _{FE}	4	3°	30	-		
	4	5°	20	-		
	4	8c	-	-		
	4	16°	3.2	-		
V _{CEO} (sus) b			0.1	200	-	
V _{CER} (sus) b R _{BE} = 100Ω	Ω		0.1	225	-	
V _{EBO} I _E =1m.	V _{EBO} I _E =1mA			5		v
U _{BE}		4	3c	-	2	
U _{CE} ^(sat) IB= 0.8	0.3A		3 ^c	-	1	
	0.8A			-	-	
	3.2A			-	-	
$I_{S/b} t_p = 0,5s$ nonrep.		80		3	-	Α
h _{fe} f=1MH:	z	10	1	4	20	
f _T		10	1	4	20	MHz
C _{OB}		10ª		-	500	pF
$R_{ heta JC}$		10	10	-	0.7	°C/W

Note a:

 $\rm V_{CB}$ $\it CAUTION$ Sustaining voltages $\rm V_{CER}^{(sus)}$ and $\rm V_{CEO}^{(sus)}$ $\it MUST$ NOT be Note b:

measured on a curve tracer, see Fig. 10

Pulse duration = 300µs, duty factor = 1.8% Note c:

Source: RCA SSD-220C (1981)

RCA9166B

Source: RCA SSD-220C (1981)

- continous collector current - peak collector current I_{CM}

- collector-cutoff current with specified resistance between base and emitter I_{CER} - collector-cutoff current with specified circuit between base and emitter I_{CEX}

- continous base current

 ${\rm I}_{\rm EBO}$ - emitter-cutoff current, collector open

- forward-bias, second break-down collector current

I_{S/b} V_{CBO} - collector-to-base voltage, emitter open

 V_{CEO} - collector-to-emitter voltage, base open $V_{\text{CEO}}^{(\text{sus})}$ - collector-to-emitter sustaining voltage, base open $V_{\text{CER}}^{(\text{sus})}$ - collector-to-emitter sustaining voltage with specified resistance between base and emitter

- emitter-to-base voltage, collector open V_{EBO}

- base-to-emitter voltage

V_{BE} V_{CE}sat - collector-to-emitter saturation voltage COB - common-base output capacitance

- gain-bandwidth product (unity-gain frequency for devices in which gain roll-off has a -1 slope)

h_{FE} - dc forward-current transfer ratio

- magnitude of common-emitter, small-signal, short-circuit, forward-current transfer ratio $|h_{fe}|$

- external base-to-emitter resistance R_{BE} - thermal resistance, junction-to-case

- transistor dissipation at specified temperature

- case temperature - storage temperature

- operating (junction) temperature - lead temperature during soldering

- conduction angle